Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism

Sci Rep. 2019 Jan 31;9(1):1056. doi: 10.1038/s41598-018-38314-8.

Abstract

A growing body of evidence suggests a key role of tumor microenvironment, especially for bone marrow mesenchymal stem cells (MSC), in the maintenance and progression of multiple myeloma (MM), through direct and indirect interactions with tumor plasma cells. Thus, this study aimed to investigate the gene expression and functional alterations of MSC from MM patients (MM-MSC) in comparison with their normal counterparts from normal donors (ND-MSC). Gene expression analysis (Affymetrix) was performed in MM-MSC and ND-MSC after in vitro expansion. To validate these findings, some genes were selected to be evaluated by quantitative real time PCR (RT-qPCR), and also functional in vitro analyses were performed. We demonstrated that MM-MSC have a distinct gene expression profile than ND-MSC, with 485 differentially expressed genes (DEG) - 280 upregulated and 205 downregulated. Bioinformatics analyses revealed that the main enriched functions among downregulated DEG were related to cell cycle progression, immune response activation and bone metabolism. Four genes were validated by qPCR - ZNF521 and SEMA3A, which are involved in bone metabolism, and HLA-DRA and CHIRL1, which are implicated in the activation of immune response. Taken together, our results suggest that MM-MSC have constitutive abnormalities that remain present even in the absence of tumors cells. The alterations found in cell cycle progression, immune system activation, and osteoblastogenesis suggest, respectively, that MM-MSC are permanently dependent of tumor cells, might contribute to immune evasion and play an essential role in bone lesions frequently found in MM patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Bone Marrow Cells / metabolism
  • Bone and Bones / metabolism*
  • Cell Division / genetics
  • Cell Division / physiology
  • Female
  • Gene Expression Profiling / methods
  • HLA-DR alpha-Chains / genetics
  • HLA-DR alpha-Chains / metabolism
  • Humans
  • Male
  • Mesenchymal Stem Cells / metabolism*
  • Middle Aged
  • Multiple Myeloma / genetics*
  • Tumor Microenvironment / genetics
  • Tumor Microenvironment / physiology

Substances

  • HLA-DR alpha-Chains