BCL::MolAlign: Three-Dimensional Small Molecule Alignment for Pharmacophore Mapping

J Chem Inf Model. 2019 Feb 25;59(2):689-701. doi: 10.1021/acs.jcim.9b00020. Epub 2019 Feb 12.

Abstract

Small molecule flexible alignment is a critical component of both ligand- and structure-based methods in computer-aided drug discovery. Despite its importance, the availability of high-quality flexible alignment software packages is limited. Here, we present BCL::MolAlign, a freely available property-based molecular alignment program. BCL::MolAlign accommodates ligand flexibility through a combination of pregenerated conformers and on-the-fly bond rotation. BCL::MolAlign converges on alignment poses by sampling the relative orientations of mutually matching atom pairs between molecules through Monte Carlo Metropolis sampling. Across six diverse ligand data sets, BCL::MolAlign flexible alignment outperforms MOE, ROCS, and FLEXS in recovering native ligand binding poses. Moreover, the BCL::MolAlign alignment score is more predictive of ligand activity than maximum common substructure similarity across 10 data sets. Finally, on a recently published benchmark set of 20 high quality congeneric ligand-protein complexes, BCL::MolAlign is able to recover a larger fraction of native binding poses than maximum common substructure-based alignment and RosettaLigand. BCL::MolAlign can be obtained as part of the Biology and Chemistry Library (BCL) software package freely with an academic license or can be accessed via Web server at http://meilerlab.org/index.php/servers/molalign .

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Cheminformatics / methods*
  • Ligands
  • Molecular Docking Simulation
  • Monte Carlo Method
  • Protein Conformation
  • Small Molecule Libraries / chemistry*
  • Small Molecule Libraries / metabolism

Substances

  • Ligands
  • Small Molecule Libraries