OEDIPUS: An Experiment Design Framework for Sparsity-Constrained MRI

IEEE Trans Med Imaging. 2019 Jul;38(7):1545-1558. doi: 10.1109/TMI.2019.2896180. Epub 2019 Feb 1.

Abstract

This paper introduces a new estimation-theoretic framework for experiment design in the context of MR image reconstruction under sparsity constraints. The new framework is called OEDIPUS (Oracle-based Experiment Design for Imaging Parsimoniously Under Sparsity constraints) and is based on combining the constrained Cramér-Rao bound with classical experiment design techniques. Compared to popular random sampling approaches, OEDIPUS is fully deterministic and automatically tailors the sampling pattern to the specific imaging context of interest (i.e., accounting for coil geometry, anatomy, image contrast, etc.). OEDIPUS-based experiment designs are evaluated using retrospectively subsampled in vivo MRI data in several different contexts. The results demonstrate that OEDIPUS-based experiment designs have some desirable characteristics relative to conventional MRI sampling approaches.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Brain / diagnostic imaging
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*