Cytotoxic T lymphocyte antigen-4-immunoglobulin (CTLA-4-Ig) exerts anti-rheumatic action via negative regulation of the co-stimulation process between antigen-presenting cells and T cells. CTLA-4-Ig also binds to CD80/CD86 on monocytes of osteoclast precursors. However, little is known about the effect of CTLA-4-Ig on osteoclastogenesis in rheumatoid arthritis (RA). In this study we evaluated the effects of CTLA-4-Ig on osteoclast generation from human blood monocytes (PBM) and rheumatoid synovial fluid monocytes (RSFM). Highly purified monocytes were cultured with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in the presence of CTLA-4-Ig. CTLA-4-Ig inhibited RANKL-induced osteoclast generation in PBM and RSFM, as determined by tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assay using osteo assay surface plates. In addition, CTLA-4-Ig reduced the gene and protein expressions of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and cathepsin K during osteoclastogenesis. Furthermore, CTLA-4-Ig significantly inhibited cell proliferation during osteoclastogenesis. Interestingly, the gene expression of indoleamine 2,3-dioxygenase-1, an inducer of apoptosis, was enhanced by CTLA-4-Ig. We next examined the effect of tumour necrosis factor (TNF)-α, a major inflammatory cytokine in rheumatoid synovium, on the expression of CD80 and CD86 by flow cytometric analysis. TNF-α potently induced the surface expression of CD80, which is known to have much higher affinity to CTLA-4-Ig than CD86, and this induction was observed at mRNA levels. Interestingly, freshly prepared rheumatoid synovial monocytes also expressed CD80 as much as TNF-α-treated PBM. Furthermore, TNF-α enhanced CTLA-4-Ig-induced inhibition of osteoclastogenesis and cell proliferation. Taken together, the TNF-α-induced CD80 may augment CTLA-4-Ig-induced inhibition of osteoclastogenesis, suggesting that CTLA-4-Ig potently inhibits osteoclast differentiation and protects bone destruction in rheumatoid inflamed joints.
Keywords: cell differentiation; cytokine; monocyte; rheumatoid arthritis.
© 2019 British Society for Immunology.