Oligodendrocytes differentiate from oligodendrocyte progenitor cells (OPCs) in response to distinct extracellular signals. This process requires changes in gene expression resulting from the interplay between transcription factors and epigenetic modulators. Extracellular signals include chemical and physical stimuli. This review focuses on the signaling mechanisms activated in oligodendrocyte progenitors in response to mechanical forces. Of particular interest is a better understanding on how these forces are transduced into the OPC nuclei and subsequently reshape their epigenetic landscape. Here we will introduce the concept of epigenetic regulation of gene expression, first in general and then focusing on the oligodendrocyte lineage. We will then review the current literature on mechano-transduction in distinct cell types, followed by pathways identified in myelinating oligodendrocytes and their progenitors. Overall, the reader will be provided with a comprehensive review of the signaling pathways which allow oligodendrocyte progenitors to "sense" physical forces and transduce them into patterns of gene expression.
Keywords: brain; cytoskeleton; epigenetics; glia; myelin.
© 2019 Wiley Periodicals, Inc.