Background: Intensive care unit-acquired weakness (ICU-AW) is associated with poorer outcome of critically ill patients. Microcirculatory changes and altered vascular permeability of skeletal muscles might contribute to the pathogenesis of ICU-AW. Muscular ultrasound (MUS) displays increased muscle echogenicity, although its pathogenesis is uncertain.
Objective: We investigated the combined measurement of serum and ultrasound markers to assess ICU-AW and clinical patient outcome.
Methods: Fifteen patients and five healthy controls were longitudinally assessed for signs of ICU-AW at study days 3 and 10 using a muscle strength sum score. The definition of ICU-AW was based on decreased muscle strength assessed by the muscular research council-sum score. Ultrasound echogenicity of extremity muscles was assessed using a standardized protocol. Serum markers of inflammation and endothelial damage were measured. The 3-month outcome was assessed on the modified Rankin scale.
Results: ICU-AW was present in eight patients, and seven patients and the control subjects did not develop ICU-AW. The global muscle echogenicity score (GME) differed significantly between controls and patients (mean GME, 1.1 ± 0.06 vs. 2.3 ± 0.41; p = 0.001). Mean GME values significantly decreased in patients without ICU-AW from assessment 1 (2.30 ± 0.48) to assessment 2 (2.06 ± 0.45; p = 0.027), which was not observed in patients with ICU-AW. Serum levels of syndecan-1 at day 3 significantly correlated with higher GME values at day 10 (r = 0.63, p = 0.012). Furthermore, the patients' GME significantly correlated with mRS at day 100 (r = 0.67, p = 0.013).
Conclusion: The combined use of muscular ultrasound and inflammatory biomarkers might be helpful to diagnose ICU-AW and to predict long-term outcome in critical illness.
Keywords: Critical illness myopathy; Critical illness polyneuropathy; Diagnosis; Electrophysiology; Intensive care unit; Muscular ultrasound; Neuromuscular dysfunction.