The present study was conducted to investigate the role of proteolysis by matrix metalloproteinase 20 (MMP20) in regulating the initial formation of the enamel mineral structure during the secretory stage of amelogenesis, utilizing Mmp20-null mice that lack this essential protease. Ultrathin sagittal sections of maxillary incisors from 8-wk-old wild-type (WT), Mmp20-null (KO), and heterozygous (HET) littermates were prepared. Secretory-stage enamel ultrastructures from each genotype as a function of development were compared using transmission electron microscopy, selected area electron diffraction, and Raman microspectroscopy. Characteristic rod structures observed in WT enamel exhibited amorphous features in newly deposited enamel, which subsequently transformed into apatite-like crystals in older enamel. Surprisingly, initial mineral formation in KO enamel was found to proceed in the same manner as in the WT. However, soon after a rod structure began to form, large plate-like crystals appeared randomly within the developing KO enamel layer. As development continued, observed plate-like crystals became dominant and obscured the appearance of the enamel rod structure. Upon formation of these plate-like crystals, the KO enamel layer stopped growing in thickness, unlike WT and HET enamel layers that continued to grow at the same rate. Raman results indicated that Mmp20-KO enamel contains a significant portion of octacalcium phosphate, unlike WT enamel. Although normal in all other respects, large, randomly dispersed mineral crystals were observed in secretory HET enamel, although to a lesser extent than that seen in KO enamel, indicating that the level of MMP20 expression has a proportional effect on suppressing aberrant mineral formation. In conclusion, we found that proteolysis of extracellular enamel matrix proteins by MMP20 is not required for the initial development of the enamel rod structure during the early secretory stage of amelogenesis. Proteolysis by MMP20, however, is essential for the prevention of abnormal crystal formation during amelogenesis.
Keywords: amelogenin; apatites; enamel biomineralization / formation; extracellular matrix proteins; hydroxyapatite; mineralized tissue / development.