Catatonia is a central aspect of schizophrenia spectrum disorders (SSD) and most likely associated with abnormalities in affective, motor, and sensorimotor brain regions. However, contributions of different cortical features to the pathophysiology of catatonia in SSD are poorly understood. Here, T1-weighted structural magnetic resonance imaging data at 3 T were obtained from 56 right-handed patients with SSD. Using FreeSurfer version 6.0, we calculated cortical thickness, area, and local gyrification index (LGI). Catatonic symptoms were examined on the Northoff catatonia rating scale (NCRS). Patients with catatonia (NCRS total score ≥3; n = 25) showed reduced surface area in the parietal and medial orbitofrontal gyrus and LGI in the temporal gyrus (P < .05, corrected for cluster-wise probability [CWP]) as well as hypergyrification in rostral cingulate and medial orbitofrontal gyrus when compared with patients without catatonia (n = 22; P < .05, corrected for CWP). Following a dimensional approach, a negative association between NCRS motor and behavior scores and cortical thickness in superior frontal, insular, and precentral cortex was found (34 patients with at least 1 motor and at least 1 other affective or behavioral symptom; P < .05, corrected for CWP). Positive associations were found between NCRS motor and behavior scores and surface area and LGI in superior frontal, posterior cingulate, precentral, and pericalcarine gyrus (P < .05, corrected for CWP). The data support the notion that cortical features of distinct evolutionary and genetic origin differently contribute to catatonia in SSD. Catatonia in SSD may be essentially driven by cortex variations in frontoparietal regions including regions implicated in the coordination and goal-orientation of behavior.
Keywords: FreeSurfer; MRI; catatonia; cortical thickness; gyrification; motor and behavioral symptoms; psychosis.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: [email protected].