Dulaglutide, a novel long-acting glucagon-like peptide 1 (GLP-1) receptor agonist, is an incretin mimetic approved for type 2 diabetes mellitus (T2DM) treatment. Alzheimer's disease (AD) is called type 3 diabetes. The aim of this study is to explore the effects of dulaglutide on the learning and memory impairment in AD mice induced by injection of streptozocin (STZ) via intracerebroventricularly (i.c.v.). 32 male C57/BL6 mice were randomly divided into four groups: control group (CON); AD model group (STZ); dulaglutide treated (Dul); dulaglutide and exendin(9-39) (Ex). Western blotting was used to detect the levels of phosphorylated tau, neurofilament (NFs) proteins and phosphorylated PI3K/AKT/GSK3β signaling pathway. Morris water maze (MWM) test was used to assess the spatial learning and memory ability. The results displayed that the hyperphosphorylation of tau and NFs were increased in the STZ and Ex groups compared to the control and Dul groups. Dulaglutide also significantly shortened the escape latency and increased the number of hidden platform crossings in MWM test. The effects of dulaglutide on decreasing the hyperphosphorylation of tau and NFs proteins through improving the PI3K/AKT/GSK3β signaling pathway may be related to its protective effects on impairment of AD-like learning and memory.
Keywords: Alzheimer's disease; Dulaglutide; Insulin signaling; NFs; STZ mice; Tau.
Copyright © 2019 Elsevier Inc. All rights reserved.