Immunotherapy might be an effective treatment in extrahepatic cholangiocarcinoma (eCCA), a tumor with extremely limited therapeutic options. Our study is to characterize the programmed death ligand-1 (PD-L1) protein expression and cancer microenvironment profiles in surgically resected eCCA samples. PD-L1 positivity was observed on tumor cells (32.3%) as well as on tumor-associated macrophages (74.2%). PD-L1 expression by eCCA correlated significantly with immune parameters such as intra-tumoral CD3+ tumor infiltrating lymphocytes (TILs) density (P = 0.002), intra-tumoral CD8+ TILs density (P < 0.001), and the expression pattern of human leukocyte antigen (HLA) class I (P < 0.001). Immunofluorescence showed that PD-L1 positive tumor cells were adjacent to PD-1 positive cells and the stroma covered with interferon-γ. Correlation with clinicopathological parameters and survival analyses revealed that PD-L1 positivity in eCCA was related to the absence of venous invasion (P = 0.030), improved overall survival (P = 0.020) and progressionfree survival (P = 0.011). HLA class I molecules defect, which is an important mechanism of immune evasion, was frequently observed in eCCA (50.0%) and was associated with a decreased number of intra-tumoral CD8+ TIL density (P = 0.028). Additionally, the presence of unusually high numbers of tumor-associated macrophages (TAMs) subsets M2 in most of eCCA (74.2%) was noted. Our study indicated that PD-L1 expression in association with intra-tumoral TILs infiltration and HLA class I expression in 32.3% of the eCCA reflects an active immune microenvironment potentially responsive to PD-1/PD-L1 inhibitors. In addition, the combination of macrophage-targeting agents may provide therapeutic synergy for future immunotherapy.
Keywords: Extrahepatic cholangiocarcinoma; HLA class I molecules; PD-L1; TAMs; TILs.