Regenerating Corticospinal Axons Innervate Phenotypically Appropriate Neurons within Neural Stem Cell Grafts

Cell Rep. 2019 Feb 26;26(9):2329-2339.e4. doi: 10.1016/j.celrep.2019.01.099.

Abstract

Neural progenitor cell grafts form new relays across sites of spinal cord injury (SCI). Using a panel of neuronal markers, we demonstrate that spinal neural progenitor grafts to sites of rodent SCI adopt diverse spinal motor and sensory interneuronal fates, representing most neuronal subtypes of the intact spinal cord, and spontaneously segregate into domains of distinct cell clusters. Host corticospinal motor axons regenerating into neural progenitor grafts innervate appropriate pre-motor interneurons, based on trans-synaptic tracing with herpes simplex virus. A human spinal neural progenitor cell graft to a non-human primate also received topographically appropriate corticospinal axon regeneration. Thus, grafted spinal neural progenitor cells give rise to a variety of neuronal progeny that are typical of the normal spinal cord; remarkably, regenerating injured adult corticospinal motor axons spontaneously locate appropriate motor domains in the heterogeneous, developing graft environment, without a need for additional exogenous guidance.

Keywords: corticospinal regeneration; neural progenitor cells; spinal cord injury; target neurons.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Axons / physiology
  • Female
  • Humans
  • Interneurons / physiology*
  • Macaca mulatta
  • Male
  • Motor Neurons / physiology*
  • Nerve Regeneration*
  • Neural Stem Cells / physiology
  • Neural Stem Cells / transplantation*
  • Neurons / physiology
  • Phenotype
  • Rats
  • Rats, Inbred F344
  • Spinal Cord Injuries / physiopathology
  • Spinal Cord Injuries / therapy*
  • Spine / innervation*