Coxsackievirus A10 (CVA10) has emerged as one of the major pathogens of hand, foot, and mouth disease in recent years. However, there are no approved vaccines or effective drugs against CVA10. Several experimental CVA10 vaccines have been shown to elicit neutralizing antibodies that could confer protection against viral infection. However, neutralizing antigenic sites on CVA10 capsid have not been well characterized. Here, we report the characterization of linear neutralization epitopes of CVA10 and the development of a CVA10 vaccine based on the identified epitopes. We showed that peptide VP2-P28, corresponding to residues 136 to 150 of VP2, were recognized by anti-inactivated CVA10 sera and effectively inhibited anti-CVA10 sera-mediated neutralization, suggesting that this peptide contains neutralizing epitopes. Insertion of VP2-P28 into hepatitis B core antigen (HBc) resulted in a chimeric virus-like particle (VLP; designated HBc-P28) with the CVA10 epitope exposed on the particle surface. HBc-P28 VLP elicited strong antibody responses against VP2-P28 in mice. Anti-HBc-P28 sera could neutralize both CVA10 clinical isolates and prototype strain, consistent with the fact that the VP2-P28 sequence is highly conserved among CVA10 strains. In addition, anti-HBc-P28 sera failed to cross-neutralize other HFMD-causing enteroviruses, indicating that neutralizing antibodies elicited by HBc-P28 VLP were CVA10-specific. Importantly, anti-HBc-P28 sera were able to provide efficient protection against lethal CVA10 infection in recipient mice. Collectively, these data show that peptide VP2-P28 represents a CVA10-specific linear neutralizing antigenic site and chimeric VLP displaying this peptide is a promising epitope-based CVA10 vaccine candidate.
Keywords: Coxsackievirus A10; Epitope; Neutralization; Vaccine; Virus-like particle.
Copyright © 2019 Elsevier B.V. All rights reserved.