Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L

Anal Biochem. 2019 May 1:572:33-44. doi: 10.1016/j.ab.2019.02.006. Epub 2019 Feb 27.

Abstract

Capparis zeylanica Linn (Caparadaceae), a well-known traditional medicinal plant has been used prevalently in the Ayurvedic system of medicine. It has long been used in treating cholera, hemiplegia, pneumonia, helmintic and inflammatory activity. This study aims to investigate the antimicrobial activity of C. zeylanica leaf extracts against pathogenic microorganisms, with the interactions of potential compounds being predicted by a computational approach. Ethyl acetate leaf extracts of C. zeylanica were evaluated for antimicrobial activity using an agar well diffusion method against pathogenic microorganisms (Staphylococcus epidermidis, Enterococcus faecalis, Salmonella paratyphi, Shigella dysenteriae, Mycobacterium tuberculosis and Candida albicans). The ethyl acetate leaf extracts of the C. zeylanica were utilized for GC-MS analysis. Computational studies were performed to analyze the novel compound using Schrodinger software. The various concentrations of ethyl acetate leaf extract of C. zeylanica were checked against pathogenic microorganisms. Among them, Salmonella paratyphi shows the maximum inhibition. Molecular docking and ADME properties showed that (3E)-N-(3,4 Dichlorophenyl)-3-(Propionylhydrazono) butanamide, Heptadecanoic-Margaric acid and 5-(3-Fluorophenyl)-7-nitro-1,3-dihydro-2H-1,4-benzodiazepine-2-one had the highest fitness score and more specificity toward the microbial receptors.

Keywords: ADME profile; Antimicrobial activity; C. zeylanica; Molecular docking; Well method.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Infective Agents / chemistry*
  • Anti-Infective Agents / metabolism
  • Anti-Infective Agents / pharmacology
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Candida albicans / drug effects
  • Capparis / chemistry*
  • Capparis / metabolism
  • Catalytic Domain
  • Fungal Proteins / chemistry
  • Fungal Proteins / metabolism
  • Gas Chromatography-Mass Spectrometry
  • Gram-Negative Bacteria / drug effects
  • Gram-Positive Bacteria / drug effects
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation*
  • Plant Extracts / chemistry
  • Plant Leaves / chemistry
  • Plant Leaves / metabolism
  • Plants, Medicinal / chemistry
  • Plants, Medicinal / metabolism

Substances

  • Anti-Infective Agents
  • Bacterial Proteins
  • Fungal Proteins
  • Plant Extracts