Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO3 Thin Films

ACS Appl Mater Interfaces. 2019 Apr 3;11(13):12941-12947. doi: 10.1021/acsami.8b21301. Epub 2019 Mar 22.

Abstract

Epitaxial strain can cause both lattice distortion and oxygen nonstoichiometry, effects that are strongly coupled at heterojunctions of complex nickelate oxides. Here we decouple these structural and chemical effects on the oxygen evolution reaction (OER) by using a set of coherently strained epitaxial NdNiO3 films. We show that within the regime where oxygen vacancies (VO) are negligible, compressive strain is favorable for the OER whereas tensile strain is unfavorable; the former induces orbital splitting, resulting in a higher occupancy in the d3 z2- r2 orbital and weaker Ni-O chemisorption. However, when the tensile strain is sufficiently large to promote VO formation, an increase in the OER is also observed. The partial reduction of Ni3+ to Ni2+ due to VO makes the eg occupancy slightly larger than unity, which is thought to account for the increased OER activity. Our work highlights that epitaxial-strain-induced lattice distortion and VO generation can be individually or collectively exploited to tune OER activity, which is important for the predictive synthesis of high-performance electrocatalysts.

Keywords: NdNiO3; nickelates; orbital polarization; oxygen evolution reaction; oxygen vacancy; strain.