Statins could reduce the risks of coronary heart disease death and ischemic cardiovascular events. In this study, we aim to explore the role of rosuvastatin in ischemia/reperfusion (I/R)-injured cardiomyocytes and the possible mechanism. An I/R model was established by oxygen-glucose deprivation/reperfusion (OGD/R). The protective effects of rosuvastatin pretreatment on OGD/R-injured cardiomyocytes were performed using MTT assay, lactate dehydrogenase (LDH) release assay, and quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics software TargetScan and miRTarBase were used to predict the targeted miRNAs with uncoupling protein (UCP)2. Furthermore, verify the binding capacity of hsa-miR-24-3p and UCP2 with qRT-PCR and dual-luciferase reporter assay. The expression of UCP2, cell viability, LDH level, and apoptosis level affected by downregulated hsa-miR-24-3p were assessed using qRT-PCR, western blotting, MTT, the LDH kit, and flow cytometry. Pretreatment with rosuvastatin could significantly augment cell viability, reduce LDH level, increase the expression of UCP2, and downregulate hsa-miR-24-3p in OGD/R-injured H9c2 cells. miR-24-3p was closely connected with UCP2, and downregulated miR-24-3p could promote UCP2 expression, which presented cell viability increasing, LDH release and cell apoptosis inhibition in OGD/R condition. Moreover, it decreased the protein expression of Cleaved-Caspase-9 and Cyto C. This is the first time our study suggests that rosuvastatin pretreatment protects cardiomyocytes from OGD/R through upregulating UCP2 through downregulation of hsa-miR-24-3p.
Keywords: OGD/R; cardiomyocytes; rosuvastatin.