Do Images of Biskyrmions Show Type-II Bubbles?

Adv Mater. 2019 Apr;31(16):e1806598. doi: 10.1002/adma.201806598. Epub 2019 Mar 7.

Abstract

The intense research effort investigating magnetic skyrmions and their applications for spintronics has yielded reports of more exotic objects including the biskyrmion, which consists of a bound pair of counter-rotating vortices of magnetization. Biskyrmions have been identified only from transmission electron microscopy images and have not been observed by other techniques, nor seen in simulations carried out under realistic conditions. Here, quantitative Lorentz transmission electron microscopy, X-ray holography, and micromagnetic simulations are combined to search for biskyrmions in MnNiGa, a material in which they have been reported. Only type-I and type-II magnetic bubbles are found and images purported to show biskyrmions can be explained as type-II bubbles viewed at an angle to their axes. It is not the magnetization but the magnetic flux density resulting from this object that forms the counter-rotating vortices.

Keywords: Lorentz transmission electron microscopy; X-ray holography; biskyrmions; magnetic bubbles; skyrmions.