Metabolism of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by human promyelocytic leukemic HL60 cells. Stimulated expression of phospholipase A2 and acetyltransferase requires differentiation

J Biol Chem. 1986 May 5;261(13):5824-31.

Abstract

Human promyelocytic leukemia (HL60) cells can be induced to differentiate into mature granulocytes by exposure to dimethyl sulfoxide. The addition of N-formylMet-Leu-Phe or the Ca2+ ionophore A23187 to these differentiated cells generated 15-30 pmol of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC)/10(6) cells as quantified by platelet aggregation assays. Under identical conditions, uninduced cells produced little alkylacetyl-GPC. Upon the addition of ionophore A23187, differentiated cells, and not uninduced ones, released [14C]arachidonate from prelabeled phospholipids including ether-linked phosphatidylcholines, formed both 3H-labeled 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (alkyllyso-GPC) and [3H]alkylacetyl-GPC from endogenous 3H-labeled 1-O-alkyl-2-(long chain) acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC), and incorporated exogenously added [3H]acetate or [3H]alkyllyso-GPC into alkylacetyl-GPC. These results are suggestive that both phospholipase A2 and acetyltransferase activities are involved in alkylacetyl-GPC biosynthesis by HL60 cells and that these activities appear during differentiation. However, when measured in cell extracts, the activities of phospholipase A2 and acetyltransferase of uninduced cells were virtually indistinguishable from those of differentiated cells. Uninduced cells exhibited enhanced incorporation of [3H]alkyllyso-GPC or [3H]alkylacetyl-GPC into alkylacyl-GPC and of [14C]arachidonate and [14C]oleate into various phospholipids including phosphatidylcholine. However, such enhanced expression of acylation reactions could not account for the lack of accumulation of arachidonate or of alkylacetyl-GPC by uninduced cells. Furthermore, analyses of phospholipid classes by phosphorus determination showed no significant alterations in phospholipid composition of HL60 cells during differentiation. Together these data are suggestive that mechanisms regulating the activation of phospholipase A2 and acetyltransferase activities are defective in uninduced cells and that an increased concentration of cytosolic free Ca2+ alone is not a sufficient requirement for these mechanisms.

MeSH terms

  • Acetyltransferases / metabolism*
  • Calcimycin / pharmacology
  • Calcium / pharmacology
  • Cell Differentiation / drug effects
  • Cell Line
  • Humans
  • Kinetics
  • Leukemia, Myeloid, Acute / metabolism*
  • Leukemia, Myeloid, Acute / pathology
  • Phospholipases / metabolism*
  • Phospholipases A / metabolism*
  • Phospholipases A2
  • Platelet Activating Factor / metabolism*

Substances

  • Platelet Activating Factor
  • Calcimycin
  • Acetyltransferases
  • Phospholipases
  • Phospholipases A
  • Phospholipases A2
  • Calcium