Concussions are common in military personnel and may result in increased risk of musculoskeletal injury. One plausible explanation for this risk could be that neuromotor deficiencies enhance injury risk after a concussion through altered muscular activation/contraction timing.
Purpose: To compare military personnel with at least one concussion during the past 1 month to 2 yr (CONCUSSED) to military branch-matched, age-matched, and Special Operations Forces group-matched controls (CONTROL) on physiological, musculoskeletal, and biomechanical performance.
Methods: A total of 48 (24 CONCUSSED, 24 CONTROL) male Air Force and Naval Special Warfare Operators age 19 to 34 yr participated in the study. Participants self-reported demographics/injury history and completed the following assessments: 1) physiological-body composition, anaerobic power and capacity, aerobic capacity and lactate threshold; 2) musculoskeletal-lower extremity isokinetic strength testing, including time to peak torque; and 3) biomechanical-single-leg jump and landing task, including landing kinematics of the hip, knee and ankle. A machine learning decision tree algorithm (C5.0) and one-way ANOVA were used to compare the two groups on these outcomes.
Results: Despite nonsignificant differences using ANOVA, the C5.0 algorithm revealed CONCUSSED demonstrated quicker time to peak knee flexion angle during the single-leg landing task (≤0.170 s; CONCUSSED: n = 22 vs CONTROL: n = 14), longer time to peak torque in knee extension isokinetic strength testing (>500 ms; CONCUSSED: n = 18 vs CONTROL: n = 4) and larger knee flexion angle at initial contact (>7.7°; CONCUSSED: n = 18 vs CONTROL: n = 2).
Conclusion: The findings supported the hypothesis that CONCUSSED military personnel would demonstrate altered neuromuscular control in landing strategies and muscular activation. Future research should assess prospectively neuromuscular changes after a concussion and determine if these changes increase risk of subsequent musculoskeletal injuries.