Heavy metal pollution is rapidly increasing in the environment. It has been shown that exposure to vanadium and chromium is able to alter the immune response. Nevertheless, the mechanisms by which these metal pollutants mediate their immunomodulatory effects are not completely understood. Herein, we examined the effect of ammonium metavanadate and potassium dichromate on the development of an inflammatory response caused by subcutaneous injection of turpentine oil. We demonstrated that pretreatment of rats with ammonium metavanadate and potassium dichromate for two weeks prior to initiation of the inflammatory response resulted in a wider zone of necrosis surrounding the site of inflammation. The acute inflammatory process in the combined model was characterized by elevated serum levels of IL-10 and decreased serum levels of IL-6 as compared to rats not treated with ammonium metavanadate and potassium dichromate. Ammonium metavanadate and potassium dichromate administration induced a decrease in the proportion of splenic His48HighCD11b/c+ myeloid cells accompanied by a reduced infiltration of the wound with neutrophils. Further analysis showed decreased proportions of CD3+CD4+IFNγ+ and CD3+CD4+IL-4+ T cells in the rats with combined model as compared to inflamed rats not treated with ammonium metavanadate and potassium dichromate. The data suggest that consumption of vanadium and chromium compounds disrupts the inflammatory response through an altered balance of pro- and anti-inflammatory cytokines and inhibition of effector T cell activation and neutrophil expansion.
Keywords: Ammonium metavanadate; T cells; aseptic inflammation; myeloid cells; potassium dichromate.