Regulation of T cell expansion by antigen presentation dynamics

Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):5914-5919. doi: 10.1073/pnas.1812800116. Epub 2019 Mar 8.

Abstract

An essential feature of the adaptive immune system is the proliferation of antigen-specific lymphocytes during an immune reaction to form a large pool of effector cells. This proliferation must be regulated to ensure an effective response to infection while avoiding immunopathology. Recent experiments in mice have demonstrated that the expansion of a specific clone of T cells in response to cognate antigen obeys a striking inverse power law with respect to the initial number of T cells. Here, we show that such a relationship arises naturally from a model in which T cell expansion is limited by decaying levels of presented antigen. The same model also accounts for the observed dependence of T cell expansion on affinity for antigen and on the kinetics of antigen administration. Extending the model to address expansion of multiple T cell clones competing for antigen, we find that higher-affinity clones can suppress the proliferation of lower-affinity clones, thereby promoting the specificity of the response. Using the model to derive optimal vaccination protocols, we find that exponentially increasing antigen doses can achieve a nearly optimized response. We thus conclude that the dynamics of presented antigen is a key regulator of both the size and specificity of the adaptive immune response.

Keywords: T cells; clonal expansion; power law; precursor frequency; vaccination.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antigen Presentation / physiology*
  • Immunity, Cellular
  • Lymphocyte Activation / immunology
  • Lymphocyte Activation / physiology
  • Mice
  • Mice, Transgenic
  • Models, Immunological
  • Models, Theoretical
  • T-Lymphocytes / physiology*
  • Vaccination / methods