Carrageenan-induced inflammation has long been used as an in vivo model of local inflammation. We developed an in vitro model of inflammation using primary blood cells to characterize gene induction following carrageenan (λ-CGN) stimulation and identify the signal transduction pathway(s) through which λ-CGN worked, using swine whole blood cultures from Yorkshire barrows. Blood samples were divided into stimulated and unstimulated groups. Unstimulated blood was a control for λ-CGN treated cultures to delineate treatment effects from time-in-culture effects. All cultures were collected and separated into two fractions; supernatant for ELISA analyses and white blood cells for mRNA expression. Lambda (λ)-CGN induced MCP-1 at the proteomic and the genomic levels. Lambda-CGN increased IL-8 protein production but had no impact on serum amyloid A protein levels. Alveolar Macrophage-Derived Neutrophil Chemotactic Factor-II (AMCF-II), a swine-specific member of the IL8/GRO family, showed increased gene expression. TNF-α and IL-6 protein levels were not induced by λ-CGN stimulation. Stimulation of HEK-293 cells co-transfected with a single pattern recognition receptor and the secreted embryonic alkaline phosphatase (SEAP) read-out system demonstrated that λ-CGN signals through the TLR-2 and TLR-4 signal transduction pathways. Using silencing RNA to inhibit TLR6 expression in TLR2 transfected HEK-293 cells indicated that λ-CGN works through the TLR2/6 pathway. Silencing TLR6 expression in TLR4 transfected HEK-293 cells showed that λ-CGN stimulation of this cell line worked through a TLR4/6 heterodimer, as lipopolysaccharide (LPS) induced SEAP production through a TLR4 homodimer. These results demonstrate that although carrageenan can stimulate through TLR4 signaling pathways, it initiates an inflammatory response in these cells that differs from a typical endotoxin effect such as LPS stimulation, in terms of the pathways and gene products altered, suggesting that activation of TLR2/6 and TLR4/6 are the predominant pathways through which carrageenan induces inflammatory responses.
Keywords: Carrageenan; Inflammation; TLR2; TLR4.
Published by Elsevier Ltd.