Medication-assisted treatments are unavailable to patients with cocaine use disorders. Efforts to develop potential pharmacotherapies have led to the identification of a promising lead molecule, JJC8-091, that demonstrates a novel binding mode at the dopamine transporter (DAT). Here, JJC8-091 and a structural analogue, JJC8-088, were extensively and comparatively assessed to elucidate neurochemical correlates to their divergent behavioral profiles. Despite sharing significant structural similarity, JJC8-088 was more cocaine-like, increasing extracellular DA concentrations in the nucleus accumbens shell (NAS) efficaciously and more potently than JJC8-091. In contrast, JJC8-091 was not self-administered and was effective in blocking cocaine-induced reinstatement to drug seeking. Electrophysiology experiments confirmed that JJC8-091 was more effective than JJC8-088 at inhibiting cocaine-mediated enhancement of DA neurotransmission. Further, when VTA DA neurons in DAT-cre mice were optically stimulated, JJC8-088 produced a significant leftward shift in the stimulation-response curve, similar to cocaine, while JJC8-091 shifted the curve downward, suggesting attenuation of DA-mediated brain reward. Computational models predicted that JJC8-088 binds in an outward facing conformation of DAT, similar to cocaine. Conversely, JJC8-091 steers DAT towards a more occluded conformation. Collectively, these data reveal the underlying molecular mechanism at DAT that may be leveraged to rationally optimize leads for the treatment of cocaine use disorders, with JJC8-091 representing a compelling candidate for development.