The magnetite Fe3O4, being anciently known magnetic material to human kind and remaining in leading positions for development of advanced technologies presently, demonstrates a number of puzzling physical phenomena, being at focus of extensive research for more than century. Recently the pressure-induced anomalous behavior of physical properties of magnetite in vicinity of the structural phase transition, occurring at P ~ 25-30 GPa, has attracted particular attention, and its nature remains unclear. Here we study the magnetic and electronic properties of magnetite across high pressure anomaly and in the pressure-induced phase by means of 57Fe synchrotron Moessbauer spectroscopy and neutron diffraction. The hyperfine interaction parameters behavior was systematically analysed over pressure 0-40 GPa and temperature 10-290 K ranges. In the high pressure phase the ferrimagnetic order formation below TNP ~ 420 K was observed and spin arrangement symmetry was deduced. The structural, magnetic and electronic phase diagram of magnetite in the discussed pressure range is established.