Background: Melioidosis, a fatal infectious disease caused by Burkholderia pseudomallei, is increasingly diagnosed in tropical regions. However, data on risk factors and the geographic epidemiology of the disease are still limited. Previous studies have also largely been based on the analysis of case series data. Here, we undertook a more definitive hospital-based matched case-control study coupled with spatial analysis to identify demographic, socioeconomic and landscape risk factors for bacteremic melioidosis in the Kedah region of northern Malaysia.
Methodology/principal findings: We obtained patient demographic and residential information and clinical presentation and medical history data from 254 confirmed melioidosis cases and 384 matched controls attending Hospital Sultanah Bahiyah (HSB), the main tertiary hospital of Alor Setar, the capital city of Kedah, during the period between 2005 and 2011. Crude and adjusted odds ratios employing conditional logistic regression analysis were used to assess if melioidosis in this region is related to risk factors connected with socio-demographics, various behavioural characteristics, and co-occurring diseases. Spatial clusters of cases were determined using a continuous Poisson model as deployed in SaTScan. A land cover map in conjunction with mapped case data was used to determine disease-land type associations using the Fisher's exact test deploying simulated p-values. Crude and adjusted odds ratios indicate that melioidosis in this region is related to gender (males), race, occupation (farming) and co-occurring chronic diseases, particularly diabetes. Spatial analyses of disease incidence, however, showed that disease risk and geographic clustering of cases are related strongly to land cover types, with risk of disease increasing non-linearly with the degree of human modification of the natural ecosystem.
Conclusions/significance: These findings indicate that melioidosis represents a complex socio-ecological public health problem in Kedah, and that its control requires an understanding and modification of the coupled human and natural variables that govern disease transmission in endemic communities.