We examined the within-player correlation between external training load (ETL) and perceptual responses to training in a professional male football team (n = 13 outfield players) over an eight-week competitive period. ETL was collected using 10-Hz GPS, whereas perceptual responses were accessed through rating of perceived exertion (RPE) questionnaires. Moderate-speed running (MSR), high-speed running (HSR) and sprinting were defined using arbitrary (fixed) and individualised speed zones (based on maximal aerobic speed and maximal sprinting speed). When ETL was expressed as actual distance covered within the training session, perceptual responses were moderately correlated to MSR and HSR quantified using the arbitrary method (p < 0.05; r = 0.53 to 0.59). However, the magnitude of correlations tended to increase when the individualised method was used (p < 0.05; r = 0.58 to 0.67). Distance covered by sprinting was moderately correlated to perceptual responses only when the individualised method was used (p < 0.05; 0.55 [0.05; 0.83] and 0.53 [0.02; 0.82]). Perceptual responses were largely correlated to the sum of distance covered within all three speed running zones, irrespective of the quantification method (p < 0.05; r = 0.58 to 0.68). When ETL was expressed as percentage of total distance covered within the training session, no significant correlations were observed (p > 0.05). Perceptual responses to training load seem to be better associated with ETL, when the latter is adjusted to individual fitness capacities. Moreover, reporting ETL as actual values of distance covered within the training session instead of percentual values inform better about players' perceptual responses to training load.
Keywords: global positioning systems; physiology; rating of perceived exertion; team sports.