PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells

Genome Biol. 2019 Mar 19;20(1):59. doi: 10.1186/s13059-019-1663-x.

Abstract

Single-cell RNA-seq quantifies biological heterogeneity across both discrete cell types and continuous cell transitions. Partition-based graph abstraction (PAGA) provides an interpretable graph-like map of the arising data manifold, based on estimating connectivity of manifold partitions ( https://github.com/theislab/paga ). PAGA maps preserve the global topology of data, allow analyzing data at different resolutions, and result in much higher computational efficiency of the typical exploratory data analysis workflow. We demonstrate the method by inferring structure-rich cell maps with consistent topology across four hematopoietic datasets, adult planaria and the zebrafish embryo and benchmark computational performance on one million neurons.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Animals
  • Computational Biology / methods*
  • Computer Graphics*
  • Embryo, Nonmammalian / cytology
  • Embryo, Nonmammalian / metabolism
  • Gene Expression Regulation, Developmental*
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / metabolism
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Planarians / cytology
  • Planarians / genetics
  • Reference Standards
  • Sequence Analysis, RNA / methods*
  • Single-Cell Analysis / methods*
  • Software
  • Zebrafish / growth & development
  • Zebrafish / metabolism