The preparation of patterned ultrathin films (sub-10 nm) composed of end-anchored fluorescently labeled poly(methyl methacrylate) (PMMA) is presented. Telechelic PMMA was synthesized utilizing activator regenerated by electron transfer atom transfer radical polymerization and consecutively end-functionalized with alkynylated fluorescein by Cu-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. The polymers were grafted via the α-carboxyl groups to silica or glass substrates pretreated with (3-aminopropyl)triethoxysilane (APTES). Patterned surfaces were prepared by inkjet printing of APTES onto glass substrates and selectively grafted with fluorescently end-labeled PMMA to obtain emissive arrays on the surface.