China has been experiencing fine particle (i.e., aerodynamic diameters ≤ 2.5 µm; PM2.5) pollution and acid rain in recent decades, which exert adverse impacts on human health and the ecosystem. Recently, ammonia (i.e., NH3) emission reduction has been proposed as a strategic option to mitigate haze pollution. However, atmospheric NH3 is also closely bound to nitrogen deposition and acid rain, and comprehensive impacts of NH3 emission control are still poorly understood in China. In this study, by integrating a chemical transport model with a high-resolution NH3 emission inventory, we find that NH3 emission abatement can mitigate PM2.5 pollution and nitrogen deposition but would worsen acid rain in China. Quantitatively, a 50% reduction in NH3 emissions achievable by improving agricultural management, along with a targeted emission reduction (15%) for sulfur dioxide and nitrogen oxides, can alleviate PM2.5 pollution by 11-17% primarily by suppressing ammonium nitrate formation. Meanwhile, nitrogen deposition is estimated to decrease by 34%, with the area exceeding the critical load shrinking from 17% to 9% of China's terrestrial land. Nevertheless, this NH3 reduction would significantly aggravate precipitation acidification, with a decrease of as much as 1.0 unit in rainfall pH and a corresponding substantial increase in areas with heavy acid rain. An economic evaluation demonstrates that the worsened acid rain would partly offset the total economic benefit from improved air quality and less nitrogen deposition. After considering the costs of abatement options, we propose a region-specific strategy for multipollutant controls that will benefit human and ecosystem health.
Keywords: China; PM2.5; acid rain; ammonia emission; nitrogen deposition.