Purpose: CD38 has emerged as a high-impact therapeutic target in multiple myeloma, with the approval of daratumumab (anti-CD38 mAb). The clinical importance of CD38 in patients with chronic lymphocytic leukemia (CLL) has been known for over 2 decades, although it's relevance as a therapeutic target in CLL remains understudied.
Experimental design: We investigated the biological effects and antitumor mechanisms engaged by daratumumab in primary CLL cells. Besides its known immune-effector mechanisms (antibody-dependent cell-mediated cytotoxicity, complement-dependent death, and antibody-dependent cellular phagocytosis), we also measured direct apoptotic effects of daratumumab alone or in combination with ibrutinib. In vivo antileukemic activity was assessed in a partially humanized xenograft model. The influence of CD38 on B-cell receptor (BCR) signaling was measured via immunoblotting of Lyn, Syk, BTK, PLCγ2, ERK1/2, and AKT.
Results: In addition to immune-effector mechanisms; daratumumab also induced direct apoptosis of primary CLL cells, which was partially dependent on FcγR cross-linking. For the first time, we demonstrated the influence of CD38 on BCR signaling where interference of CD38 downregulated Syk, BTK, PLCγ2, ERK1/2, and AKT; effects that were further enhanced by addition of ibrutinib. In comparison to single-agent treatment, the combination of ibrutinib and daratumumab resulted in significantly enhanced anti-CLL activity in vitro and significantly decreased tumor growth and prolonged survival in the in vivo CLL xenograft model.
Conclusions: Overall, our data demonstrate the antitumor mechanisms of daratumumab in CLL; furthermore, we show how cotargeting BTK and CD38 lead to a robust anti-CLL effect, which has clinical implications.
©2019 American Association for Cancer Research.