Covalent modification of Cys-239 in β-tubulin by small molecules as a strategy to promote tubulin heterodimer degradation

J Biol Chem. 2019 May 17;294(20):8161-8170. doi: 10.1074/jbc.RA118.006325. Epub 2019 Apr 2.

Abstract

Clinical microtubule-targeting drugs are functionally divided into microtubule-destabilizing and microtubule-stabilizing agents. Drugs from both classes achieve microtubule inhibition by binding different sites on tubulin and inhibiting or promoting polymerization with no concomitant effects on the protein levels of tubulin heterodimers. Here, we have identified a series of small molecules with diverse structures potentially representing a third class of novel tubulin inhibitors that promote degradation by covalent binding to Cys-239 of β-tubulin. The small molecules highlighted in this study include T0070907 (a peroxisome proliferator-activated receptor γ inhibitor), T007-1 (a T0070907 derivative), T138067, N,N'-ethylene-bis(iodoacetamide) (EBI), and allyl isothiocyanate (AITC). Label-free quantitative proteomic analysis revealed that T007-1 promotes tubulin degradation with high selectivity. Mass spectrometry findings showed covalent binding of both T0070907 and T007-01 to Cys-239 of β-tubulin. Furthermore, T007-1 exerted a degradative effect on tubulin isoforms possessing Cys-239 (β2, β4, and β5(β)) but not those containing Ser-239 (β3, β6) or mutant β-tubulin with a C239S substitution. Three small molecules (T138067, EBI, and AITC) also reported to bind covalently to Cys-239 of β-tubulin similarly induced tubulin degradation. Our results strongly suggest that covalent modification of Cys-239 of β-tubulin by small molecules could serve as a novel strategy to promote tubulin heterodimer degradation. We propose that these small molecules represent a third novel class of tubulin inhibitor agents that exert their effects through degradation activity.

Keywords: T0070907; anticancer drug; covalent modification; cytoskeleton; microtubule; protein degradation; small molecule; tubulin; tubulin degradation; tubulin inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzamides* / chemistry
  • Benzamides* / pharmacology
  • Cysteine / chemistry
  • Cysteine / metabolism
  • HCT116 Cells
  • HeLa Cells
  • Humans
  • Isothiocyanates* / chemistry
  • Isothiocyanates* / pharmacology
  • Protein Isoforms / chemistry
  • Protein Isoforms / metabolism
  • Protein Multimerization / drug effects*
  • Proteolysis
  • Pyridines* / chemistry
  • Pyridines* / pharmacology
  • Sulfonamides* / chemistry
  • Sulfonamides* / pharmacology
  • Tubulin* / chemistry
  • Tubulin* / metabolism

Substances

  • Benzamides
  • Isothiocyanates
  • Protein Isoforms
  • Pyridines
  • Sulfonamides
  • T 0070907
  • Tubulin
  • acetyl isothiocyanate
  • Cysteine
  • batabulin