To enable reliable cell fate decisions, mammalian cells need to adjust their responses to dynamically changing internal states by rewiring the corresponding signaling networks. Here, we combine time-lapse microscopy of endogenous fluorescent reporters with computational analysis to understand at the single-cell level how the p53-mediated DNA damage response is adjusted during cell cycle progression. Shape-based clustering revealed that the dynamics of the CDK inhibitor p21 diverges from the dynamics of its transcription factor p53 during S phase. Using mathematical modeling, we predict and experimentally validate that S phase-specific degradation of p21 by PCNA-CRL4cdt2 is sufficient to explain these heterogeneous responses. This highlights how signaling pathways and cell regulatory networks intertwine to adjust the cellular response to the individual needs of a given cell.
Keywords: PCNA; cell cycle regulation; cellular heterogeneity; genome engineering; mathematical modeling; p21; p53 signaling; shape-based clustering; single-cell analysis; time-lapse microscopy.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.