The stereochemical courses of the hydrolyses catalysed by three glycosidases have been determined directly by 1H nmr. The anomeric configuration of the initially formed product was ascertained in each case by observation of the chemical shift and coupling constant of the anomeric proton at the new hemiacetal centre. Two of the enzymes investigated, an endo-glucanase and an exo-glucanase are components of the cellulase complex of Cellulomonas fimi. The third enzyme is the beta-glucosidase from almond emulsin. Two of these enzymes, the exo-glucanase and the almond beta-glucosidase catalysed hydrolysis with retention of anomeric configuration, in agreement with previous observations on the almond enzyme. The endo-glucanase catalysed hydrolysis with inversion of configuration, this result being confirmed by optical rotation measurements. This 1H nmr approach has several advantages over other techniques in that it is applicable to a wide variety of glycosidases and substrates and it is non-destructive, allowing recovery of the enzyme.