Silks are natural protein biopolymers with desirable mechanical properties and play crucial roles in insect survival and reproduction. However, the mechanisms by which large amounts of silk fibroin are efficiently secreted from the protein production organs (silk glands) remain elusive. Here, we focus on a dominant silkworm mutation, naked pupa (Nd), which enables carriers to lose spinning behaviors, produce a deficiency of silk fibroin production, and result in degenerate posterior silk gland (PSG). Linkage mapping and sequencing analyses revealed a deletion of 19 bp of the fibroin heavy chain (FibH), which results in a frameshift-caused deletion of the C-terminal domain (CT) responsible for the Nd locus. Immunofluorescence and immunoblot analysis showed that the PSG cells with truncated FibH exhibit blockades in the secretion of all three fibroins (FibH, FibL, and P25) from silk gland cell to silk gland lumen (a secretion-deficiency). By comparing the hereditary characters of three naked silkworm mutations (Nd, Nd-s, and fibH-ko), we explored the relationship between dominant and recessive inheritances in naked silkworms and found that high-molecular-weight/repetitive FibH with secretion-deficiency was in positive correlation with PSG atrophy phenotype, and moreover, the repetitive region of Nd-FibH accounted for the dominant phenotypes of fibroin secretion-deficiency, PSG atrophy, and naked pupa in B. mori. Our results uncovered the molecular nature of the silkworm Nd mutation and significantly improved our understanding of fibroin synthesis and secretion in silk-spinning caterpillars.
Keywords: Bombyx mori; Fibroin heavy chain; Gland atrophy; Naked pupa; Silk secretion.
Copyright © 2019 Elsevier Ltd. All rights reserved.