Background: Patients with single ventricle (SV) may often undergo aortic reconstruction that creates a stiff large vessel, increasing afterload and affecting exercise performance. The objective of this study was to determine the relationship of pulse wave velocity (PWV) and distensibility in reconstructed and normal aortic arches after Fontan with exercise variables.
Methods: PWV and distensibility of the descending aorta at the level of the diaphragm (DAo) were calculated with real-time exercise cardiac magnetic resonance in 48 patients with SV after Fontan (18 after aortic reconstruction; 30 without aortic reconstruction) and compared with metabolic exercise stress test variables.
Results: PWV was greater in the reconstructed group than in the non-reconstructed group (median 4.4 m/s [range: 2.3 to 9.8 m/s] versus 3.6 [range: 2.6 to 6.3 m/s], respectively, p = 0.003). Statistically significant inverse correlations were found between PWV and end-diastolic, end-systolic, and stroke volumes at rest and at exercise in the reconstructed group. In addition, inverse correlations also existed in the reconstructed group between distensibility of the DAo and the exercise variables such as peak oxygen pulse (R = 0.56, p = 0.02), peak oxygen consumption (R = 0.63, p = 0.008), oxygen consumption at ventilatory anaerobic threshold (R = 0.48, p = 0.04), and peak work (R = 0.54, p = 0.02). Similar correlations were not seen in patients with non-reconstructed aortas.
Conclusions: Patients with SV with reconstructed aortas have increased aortic stiffness, increasing afterload on the ventricle. Native DAo stiffness distal to the reconstruction is inversely correlated with exercise performance, presumably to decrease impedance mismatch to maintain homogeneity of the aortic wall. This information suggests a possible mechanism for decreased exercise performance in patients with SV with aortic reconstructions.
Copyright © 2019 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.