Synthesis of intermediate containing P(O)-Cl bonds is the key to converting P(O)-H bonds to P(O)-N. In this work we have performed chlorination reactions of different H-phosphinates and H-phosphonates using N-chlorosuccinimide as an environmentally-benign chlorinating agent. The chlorination reaction showed high yield and high selectivity for transformation of P(O)-H bonds into P(O)-Cl analogues, resulting in an easily separable succinimide as the by-product. Using a one-pot synthesis methodology, we have synthesized a series of P(O)-N containing derivatives whose synthesis was found to be dependent on the reaction solvents and the starting materials. The synthesized P(O)-N compounds were incorporated in flexible polyurethane foam (FPUF) and screened for their influence in thermal decomposition of FPUFs using thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC). All solid P(O)-N compounds influenced the first-stage decomposition of FPUFs, which resulted in an accelerated decomposition or temporary stabilization of this stage. However, the liquid P(O)-N derivatives volatilize at an earlier stage and could be active in the gas phase. In addition, they also work in condensed phase via acid catalyzed decomposition for FPUFs.
Keywords: chlorination reaction; phosphonamidates; phosphoramidates; polyurethane foams; thermal decomposition.