Synthesis, Characterization and Application of Four Novel Electrochromic Materials Employing Nitrotriphenylamine Unit as the Acceptor and Different Thiophene Derivatives as the Donor

Polymers (Basel). 2017 May 13;9(5):173. doi: 10.3390/polym9050173.

Abstract

In this study, four novel donor⁻acceptor systems, 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin -5-yl)-N-(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl)-N-(4-nitrophenyl)aniline (NETPA), 4- (4-methoxythiophen-2-yl)-N-(4-(4-methoxythiophen-2-yl)phenyl)-N-(4-nitrophenyl)aniline (NMOTPA), 4-(4-methylthiophen-2-yl)-N-(4-(4-methylthiophen-2-yl)phenyl)-N-(4-nitrophenyl) aniline (NMTPA) and 4-nitro-N,N-bis(4-(thiophen-2-yl)phenyl)aniline (NTTPA), were successfully synthesized by Stille coupling reaction and electropolymerized to obtain highly stable conducting polymers, PNETPA, PNMOTPA, PNMTPA and PNTTPA, respectively. The polymers were characterized using cyclic voltammetry (CV), step profiling and UV⁻Vis⁻NIR spectroscopy. The band gaps (Eg values) were 1.34, 1.59, 2.26, and 2.34 eV, for PNETPA, PNMOTPA, PNMTPA and PNTTPA, respectively. In addition, electrochromic switching showed that all polymers exhibit outstanding optical contrasts, high coloration efficiencies and fast switching speeds in the near-infrared region (NIR). These properties make the polymers suitable materials for electrochromic applications in NIR region.

Keywords: electrochemistry; electrochromism; nitrotriphenylamine; spectroelectrochemistry; thiophene derivatives.