Comprehensive optical characterization of atomically thin NbSe2

Phys Rev B. 2018:98:10.1103/PhysRevB.98.165109. doi: 10.1103/PhysRevB.98.165109.

Abstract

Transition-metal dichalcogenides (TMDCs) have offered experimental access to quantum confinement in one dimension. In recent years, metallic TMDCs like NbSe2 have taken center stage with many of them exhibiting interesting temperature-dependent properties such as charge density waves and superconductivity. In this paper, we perform a comprehensive optical analysis of NbSe2 by utilizing Raman spectroscopy, differential reflectance contrast, and spectroscopic ellipsometry. These analyses, when coupled with Kramers-Kronig analysis, allow us to extract the dielectric functions of bulk and atomically thin NbSe2 and relate them to the resonant behavior of the Raman spectra.