Background: Numerous fillers are increasingly used for augmentation of volume loss and relaxation of facial wrinkles. Collagen stimulators are the latest next-generation dermal fillers that can induce neocollagenesis. To investigate biophysical characteristics, safety, and efficacy of newly developed polydioxanone (PDO) filler in comparison with poly-l lactic acid (PLLA) and polycaprolactone (PCL) fillers.
Methods: In vitro assay, morphology of particles, and rheological property of fillers were measured. A total of 24 female hairless mice (SKH1-Hrhr ) were randomly divided into three groups and injected with PDO, PLLA, or PCL fillers. Durability of fillers was assessed at 0, 3 days, and 1, 4, 8, 12 weeks after injection using folliscope and PRIMOS. To determine biocompatibility and neocollagenesis, histologic evaluation was performed at 1, 4, 8, and 12 weeks after injection. Efficacy was also evaluated based on skin surface roughness changes using PRIMOS in a hairless mouse photoaging model.
Results: In the particle morphology test, PDO microspheres had an irregular surface and were spherical and uniformly sized. PDO filler demonstrated similar neocollagenesis and inflammatory response to other collagen stimulators. PDO filler showed better biodegradability than PLLA and PCL fillers. In the hairless mouse photoaging model, there was a statistically significant decrease in skin surface roughness after PDO filler injection.
Conclusions: Our data suggest that newly developed collagen stimulating PDO filler might be a safe and effective option for correction of volume loss and rejuvenation of photoaging skin.
Keywords: l lactic acid; neocollagenesis; poly-d; polycaprolactone; polydioxanone.
© 2019 Wiley Periodicals, Inc.