Multidrug resistance is one of the leading causes of chemotherapy failure in cancer patients. Early detection and capture of drug-resistant tumor cells can facilitate the monitoring of the therapy process and improve the prognosis of patients. In this study, novel P-glycoprotein (P-gp) antibody modified porous hydrogel particles are proposed for drug-resistant tumor cells capture. The hydrogel particles employ a highly biocompatible hydrogel, methacrylate gelatin (GelMA), as the carrier and replicate from the silica colloidal crystal beads. By the modification of P-gp antibody probes on their surfaces, the hydrogel particles are endowed with the ability to capture drug-resistant tumor cells, which overexpress specific components of P-gp on their membranes. Additionally, the acquired ordered porous nanostructure of the particles can provide not only more surface area for antibody immobilization but also a nanopatterned platform for highly efficient target cell capture. The above advantages make the porous hydrogel particles ideal for efficient capture and detection of the drug-resistant tumor cells, which can be expected to facilitate the point-of-care pharmacotherapy and promisingly improve the patient outcomes.
Keywords: P-glycoprotein (P-gp); colloidal crystals; leukemia; multidrug resistance (MDR); porous particles.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.