Purely alluvial rivers cannot sustain knickpoints along their long profiles, as they would be obliterated by diffusional morphodynamics. Bedrock streams with a partial alluvial cover, however, form and sustain slope breaks over long periods of time. Here we consider the case of an initial profile of a bedrock-alluvial stream with a sharp slope break, or knickpoint, from high to low midway. We show that if the initial flow is sufficiently Froude-supercritical in the upstream reach and Froude-subcritical in the downstream reach, a three-tiered structure can evolve at the slope break: a hydraulic jump at the water surface; a scour hole in the alluvium above the bedrock, and a plunge pool carved into bedrock. Once the profile adjusts to balance uplift, it can migrate upstream without changing form.