The ferric uptake regulator A (FurA) plays an essential role in responding to oxidative stress in mycobacteria. The genome of Mycobacterium smegmatis harbours three FurA orthologs; however, the potential cross-talk and contribution to drug resistance of different furA operon remain underdetermined. In this study, we characterized the cross-regulation and effect in drug resistance of these orthologs from M. smegmatis. Cross-binding of FurA protein to furA promoter was observed. The binding of FurA1 to furA3p and FurA2 to furA1p or furA3p is even more pronounced than their self-binding. The three FurA proteins are all functional at repressing the expression of the peroxidase enzyme katG1/katG2 in vivo. When overexpressing any of the furA orthologs in M. smegmatis, the bacteria become more resistant to isoniazid (INH). This pattern is consistent with that in Mycobacterium bovis. However, the knockdown of furA does not affect the INH sensitivity. This is the first report of cross-talk and contribution to drug resistance of all three furA orthologs in M. smegmatis.
Keywords: furA; katG; cross-talk; isoniazid resistance; mycobacteria.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.