Light Lanthanide Metallocenium Cations Exhibiting Weak Equatorial Anion Interactions

Chemistry. 2019 Jun 7;25(32):7749-7758. doi: 10.1002/chem.201901167. Epub 2019 May 13.

Abstract

As the dysprosocenium complex [Dy(Cpttt )2 ][B(C6 F5 )4 ] (Cpttt =C5 H2 tBu3 -1,2,4, 1-Dy) exhibits magnetic hysteresis at 60 K, similar lanthanide (Ln) complexes have been targeted to provide insights into this remarkable property. We recently reported homologous [Ln(Cpttt )2 ][B(C6 F5 )4 ] (1-Ln) for all the heavier Ln from Gd-Lu; herein, we extend this motif to the early Ln. We find, for the largest LnIII cations, that contact ion pairs [Ln(Cpttt )2 {(C6 F51 -F)B(C6 F5 )3 }] (1-Ln; La-Nd) are isolated from reactions of parent [Ln(Cpttt )2 (Cl)] (2-Ln) with [H(SiEt3 )2 ][B(C6 F5 )4 ], where the anion binds weakly to the equatorial sites of [Ln(Cpttt )2 ]+ through a single fluorine atom in the solid state. For smaller SmIII , [Sm(Cpttt )2 ][B(C6 F5 )4 ] (1-Sm) is isolated, which like heavier 1-Ln does not exhibit equatorial anion interactions, but the EuIII analogue 1-Eu could not be synthesised due to the facile reduction of EuIII precursors to EuII products. Thus with the exception of Eu and radioactive Pm this work constitutes a structurally similar family of Ln metallocenium complexes, over 50 years after the [M(Cp)2 ]+ series was isolated for the 3d metals.

Keywords: cyclopentadienyl ligands; lanthanides; magnetic properties; metallocenes; sandwich complexes.