In this study, aluminum oxide (Al2O3) films were prepared by a spatial atomic layer deposition using deionized water and trimethylaluminum, followed by oxygen (O2), forming gas (FG), or two-step annealing. Minority carrier lifetime of the samples was measured by Sinton WCT-120. Field-effect passivation and chemical passivation were evaluated by fixed oxide charge (Qf) and interface defect density (Dit), respectively, using capacitance-voltage measurement. The results show that O2 annealing gives a high Qf of - 3.9 × 1012 cm-2, whereas FG annealing leads to excellent Si interface hydrogenation with a low Dit of 3.7 × 1011 eV-1 cm-2. Based on the consideration of the best field-effect passivation brought by oxygen annealing and the best chemical passivation brought by forming gas, the two-step annealing process was optimized. It is verified that the Al2O3 film annealed sequentially in oxygen and then in forming gas exhibits a high Qf (2.4 × 1012 cm-2) and a low Dit (3.1 × 1011 eV-1 cm-2), yielding the best minority carrier lifetime of 1097 μs. The SiNx/Al2O3 passivation stack with two-step annealing has a lifetime of 2072 μs, close to the intrinsic lifetime limit. Finally, the passivated emitter and rear cell conversion efficiency was improved from 21.61% by using an industry annealing process to 21.97% by using the two-step annealing process.
Keywords: Aluminum oxide; Atomic layer deposition; Passivated emitter and rear cell; Passivation; Two-step annealing.