nab-Paclitaxel ( nab-P), an albumin-bound formulation of paclitaxel, was developed to improve the tolerability and antitumor activity of taxanes. The neonatal Fc receptor (FcRn) is a transport protein that can bind to albumin and regulate the homeostasis of circulating albumin. Therefore, the pharmacokinetics and pharmacodynamics of nab-P may be impacted by FcRn expression. This study aimed to investigate the effects of FcRn on nab-P elimination and distribution to targeted tissues. Wild-type and FcRn-knockout (FcRn-KO) mice were treated with nab-P, mouse-specific nab-P (distribution experiments only), and solvent-based paclitaxel (pac-T). Blood and tissue samples were collected for distribution analyses. Organ, urine, and fecal samples were collected for elimination analyses. The nab-P tissue penetration in the pancreas, fat pad, and kidney of wild-type mice, as reflected by the ratio of tissue/plasma concentration, was significantly higher (ranging from 5 to 80 fold) than that of FcRn-KO mice. In contrast, the tissue penetration of pac-T in these organs of FcRn-KO mice was similar to that of wild-type mice. More importantly, the excretion of nab-P in feces of FcRn-KO mice (45-68%) was significantly higher than that of wild-type mice (26-46%) from 8 to 48 h post treatment. In comparison, the difference of excretion of pac-T in feces between FcRn-KO mice and wild-type mice was smaller than that of nab-P. Furthermore, greater tissue penetration and fecal excretion were observed with nab-P than pac-T in both FcRn-KO and wild-type mice. These findings suggest that FcRn enhances the tissue distribution and penetration of nab-P in the targeted organs, while FcRn prevents excretion of nab-P to feces in the intestinal lumen. The findings support the notion that albumin nanoparticle delivery alters drug distribution and elimination through an FcRn-mediated process to impact drug efficacy and toxicity.
Keywords: FcRn; albumin-bound paclitaxel; elimination; paclitaxel; pharmacokinetics; tissue distribution.