Eu3+, Tb3+- and Er3+, Yb3+-Doped α-MoO3 Nanosheets for Optical Luminescent Thermometry

Nanomaterials (Basel). 2019 Apr 21;9(4):646. doi: 10.3390/nano9040646.

Abstract

Here we report a novel synthesis approach for the preparation of α-MoO3:Ln3+ materials employing a two-step synthesis. Additionally, in this work the α-MoO3:Ln3+ materials are reported as potential optical thermometers for the first time. In this synthesis approach, first MoS2 2D nanosheets were prepared, which were further heat treated to obtain α-MoO3. These materials were fully characterized by powder X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF), thermogravimetry (TG) and differential thermal analysis (DTA), transmission electron microscopy (TEM), and luminescence spectroscopy. Temperature-dependent luminescence measurements were carried out to determine the optical thermometric properties of two different types of α-MoO3:Ln3+ materials (Eu3+/Tb3+ downshifting and Er3+/Yb3+ upconversion luminescence systems). We demonstrate in this study that this class of material could be a potential candidate for temperature-sensing applications.

Keywords: a two-step synthesis; temperature sensing; α-MoO3:Ln3+.