Reduced risk of HIV-1 infection correlated with antibody responses to the envelope variable 1 and 2 regions in the RV144 vaccine trial. To understand the relationship between antibody responses, V2 sequence, and structure, plasma samples (n = 16) from an early acute HIV-1 infection cohort from Thailand infected with CRF01_AE strain were analyzed for binding to V2 peptides by surface plasmon resonance. Five participants with a range of V2 binding responses at week 24 post-infection were further analyzed against a set of four overlapping V2 peptides that were designed based on envelope single-genome amplification. Antibody responses that were relatively consistent over the four segments of the V2 region or a focused response to the C-strand (residues 165-186) of the V2 region were observed. Viral escape in the V2 region resulted in significantly reduced antibody binding. Structural modeling indicated that the C-strand and the sites of viral variation were highly accessible in the open conformation of the HIV-1 Env trimer. V2 residues, 165-186 are preferentially targeted during acute infection. Residues 169-184 were also preferentially targeted by the protective immune response in the RV144 trial, thus emphasizing the importance of these residues for vaccine design.
Keywords: CRF01_AE; HIV-1; RV217 prospective study; V2 region; acute infection; immune response; single genome amplification (SGA); structural biology; surface plasmon resonance (SPR); transmitted/founder (T/F) virus.