Increased hepatic ischemia-reperfusion (IR) injury in steatotic livers is a major reason for rejecting the use of fatty livers for liver transplantation. Necroptosis is implicated in the pathogenesis of fatty liver diseases. Necroptosis is regulated by three key proteins: receptor-interacting serine/threonine-protein kinase (RIPK)-1, RIPK3, and mixed-lineage kinase domain-like protein (MLKL). Here, we found that marked steatosis of the liver was induced when a Western diet was given in mice; steatosis was associated with the inhibition of hepatic proteasome activities and with increased levels of key necroptosis-related proteins. Mice fed a Western diet had more severe liver injury, as demonstrated by increases in serum alanine aminotransferase and necrotic areas of liver, after IR than did mice fed a control diet. Although hepatic steatosis was not different between Mlkl knockout mice and wild-type mice, Mlkl knockout mice had decreased hepatic neutrophil infiltration and inflammation and were protected from hepatic IR injury, irrespective of diet. Intriguingly, Ripk3 knockout or Ripk3 kinase-dead knock-in mice were protected against IR injury at the late phase but not the early phase, irrespective of diet. Overall, our findings indicate that liver steatosis exacerbates hepatic IR injury via increased MLKL-mediated necroptosis. Targeting MLKL-mediated necroptosis may help to improve outcomes in steatotic liver transplantation.
Copyright © 2019 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.