Psoriasis is a proliferative inflammatory skin disorder with relapsing episodes. Herein, the efficacy of babchi oil (BO) loaded nanostructure gel was evaluated for antipsoriatic activity and oxidative stress biomarkers assessment using mouse tail model. BO was entrapped into cyclodextrin-based nanocarriers (360.9 ± 19.55 nm), followed by incorporation into Carbopol gel and characterised for viscosity, spreadability, and texture analysis. The gels were topically applied on mouse-tails once daily for fourteen days. Evaluation of antipsoriatic activity as determined by histopathological observations of orthokeratotic epidermis revealed two times higher efficacy of BO nanogel in comparison to the native BO gel. Further, significantly enhanced superoxide dismutase (SOD) and reduced glutathione (GSH) levels, and diminished malondialdehyde (MDA) and nitrite (NO) levels revealed that prepared nanogels played a major role in the management of reactive oxygen species (ROS) associated in psoriasis pathogenesis. Hence, this study provides strong evidence for use of cyclodextrin-based nanogels as a safe and better delivery carrier of BO for management of psoriasis.
Keywords: Carbopol gel; Cyclodextin-based nanostructures; antioxidant enzymes; babchi oil; lipid peroxidation; mouse-tail model.