Dauer signalling pathway model for Haemonchus contortus

Parasit Vectors. 2019 Apr 29;12(1):187. doi: 10.1186/s13071-019-3419-6.

Abstract

Background: Signalling pathways have been extensively investigated in the free-living nematode Caenorhabditis elegans, but very little is known about these pathways in parasitic nematodes. Here, we constructed a model for the dauer-associated signalling pathways in an economically highly significant parasitic worm, Haemonchus contortus.

Methods: Guided by data and information available for C. elegans, we used extensive genomic and transcriptomic datasets to infer gene homologues in the dauer-associated pathways, explore developmental transcriptomic, proteomic and phosphoproteomic profiles in H. contortus and study selected molecular structures.

Results: The canonical cyclic guanosine monophosphate (cGMP), transforming growth factor-β (TGF-β), insulin-like growth factor 1 (IGF-1) and steroid hormone signalling pathways of H. contortus were inferred to represent a total of 61 gene homologues. Compared with C. elegans, H. contortus has a reduced set of genes encoding insulin-like peptides, implying evolutionary and biological divergences between the parasitic and free-living nematodes. Similar transcription profiles were found for all gene homologues between the infective stage of H. contortus and dauer stage of C. elegans. High transcriptional levels for genes encoding G protein-coupled receptors (GPCRs), TGF-β, insulin-like ligands (e.g. ins-1, ins-17 and ins-18) and transcriptional factors (e.g. daf-16) in the infective L3 stage of H. contortus were suggestive of critical functional roles in this stage. Conspicuous protein expression patterns and extensive phosphorylation of some components of these pathways suggested marked post-translational modifications also in the L3 stage. The high structural similarity in the DAF-12 ligand binding domain among nematodes indicated functional conservation in steroid (i.e. dafachronic acid) signalling linked to worm development.

Conclusions: Taken together, this pathway model provides a basis to explore hypotheses regarding biological processes and regulatory mechanisms (via particular microRNAs, phosphorylation events and/or lipids) associated with the development of H. contortus and related nematodes as well as parasite-host cross talk, which could aid the discovery of new therapeutic targets.

Keywords: Dauer signalling pathway; Haemonchus contortus; Phospho-proteomic analysis; Proteomic analysis; Transcriptomic analysis.

MeSH terms

  • Animals
  • Caenorhabditis elegans Proteins / genetics
  • Gene Expression Profiling
  • Gene Expression Regulation
  • Genomics
  • Haemonchus / genetics*
  • Haemonchus / metabolism*
  • Metabolic Networks and Pathways
  • Models, Molecular
  • Proteomics
  • Signal Transduction*
  • Transcription Factors / genetics
  • Transcriptome

Substances

  • Caenorhabditis elegans Proteins
  • Transcription Factors