Bone marrow-derived mesenchymal stem cells (BMSCs) hold great promise for treating ischemic stroke owing to their capacity to secrete various trophic factors with potent angiogenic and neurogenic potentials. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limits effective therapies for the treatment of stroke. The combination of BMSCs and pharmacological agent can promote the migration of BMSCs toward infarcted regions and improve the therapeutic effects after stroke. In this study, we aimed to investigate whether BMSCs combined with tetramethylpyrazine (TMP) enhanced BMSC migration into the ischemic brain, which had better therapeutic effect in the treatment of stroke. In a rat stroke model, we found that combination treatment significantly upregulated ischemic brain stromal-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) expressions, and promoted BMSCs homing toward the ischemic regions than BMSC monotherapy. Moreover, BMSCs combined with TMP synergistically increased the expression of vascular endothelial growth factor and brain-derived neurotrophic factor, promoted angiogenesis and neurogenesis, and improved functional outcome after stroke. These results suggest that combination treatment could not only enhance the migration of BMSCs into the ischemic brain but also act in a synergistic way to potentiate endogenous repair processes and functional recovery after ischemic stroke.
Keywords: angiogenesis; bone marrow-derived mesenchymal stem cells; migration; neurogenesis; tetramethylpyrazine.